Dérivées d'ordres supérieurs et applications

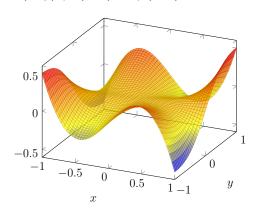
Les exercices ou les questions marqués d'une étoile ne sont pas prioritaires.

Dérivées du second ordre

Calculer un développement limité en l'origine et à l'ordre 2 des fonctions Exercice 1. suivantes:

- 1. $f(x,y) = x^2(x+y)$.
- 2. $f(x, y, z) = ze^{xy}$.

Exercice 2.* (Contre exemple au théorème de Schwarz) Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(x,y) = \frac{x^3y - xy^3}{x^2 + y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0.



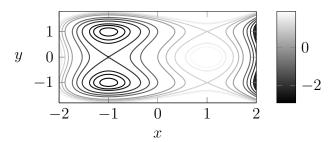
- 1. La fonction f est-elle continue en (0,0)?
- 2. La fonction f admet-elle des dérivées partielles en (0,0)?
- 3. La fonction f est elle de classe C^1 sur \mathbb{R}^2 ?
- 4. La fonction f est-elle différentiable en (0,0)?
- 5. La fonction f est-elle \mathcal{C}^2 sur \mathbb{R}^2 ?

Trouver toutes les fonctions $f: \mathbb{R}^2 \to \mathbb{R}$, de classe \mathcal{C}^2 sur \mathbb{R}^2 qui vérifient Exercice 3.

- 1. $\frac{\partial^2 f}{\partial x^2} = 0$. 2. $\frac{\partial^2 f}{\partial x \partial y} = 0$. 3. $\frac{\partial^2 f}{\partial x^2}(x, y) = \cos(x + y)$.

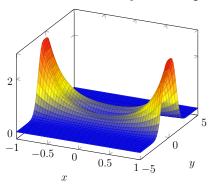
Extrema 2

Voici les courbes de niveau de la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par f(x,y) =Exercice 4. $3x - x^3 - 2y^2 + y^4$.



- 1. À partir de la figure : identifier les points critiques de f et préciser leur nature.
- 2. Retrouver les résultats de la question 1. par le calcul.

Exercice 5. Étudier les extrema de la fonction f définie par $f(x,y)=(x^2+y^2)e^{x^2-y^2}$.



Exercice 6. (Droite des moindres carrés) Soient n points $(x_1, y_1), \dots, (x_n, y_n)$ de \mathbb{R}^2 tels que

$$\frac{1}{n}\sum_{i=1}^{n} \left(x_i - \frac{1}{n}\sum_{i=1}^{n} x_i\right)^2 > 0.$$
 (*)

On cherche à minimiser la fonctionnelle $d(a,b) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$ définie pour tout $(a,b) \in \mathbb{R}^2$.

- 1. Que signifie la condition (*)?
- 2. Démontrer qu'il existe un unique point critique (a^*, b^*) de d.
- 3. Démontrer que ce point critique est un minimum.
- 4. On donne les points suivants

\overline{i}	1	2	3	4	5
$\overline{x_i}$	1	2	3	4	5
y_i	0.9	1.5	3.5	4.2	4.9

Calculer (a^*, b^*) et représenter graphiquement la droite des moindres carrés.

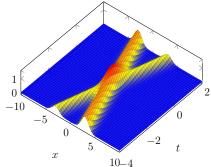
3 Équations aux dérivées partielles

Exercice 7. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^2 . On pose $g(x,y) = f(x^2 - y^2, 2xy)$. Calculer Δg en fonction de Δf où $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$.

Exercice 8.* (Équation des cordes vibrantes) Soit c un réel non nul. Chercher les solutions de classe C^2 de l'équation aux dérivées partielles suivante

$$c^2 \frac{\partial^2 f}{\partial x^2}(x,t) = \frac{\partial^2 f}{\partial t^2}(x,t)$$
 pour tout $x, t \in \mathbb{R}$.

Indication : utiliser un changement de variables de la forme u = x + at, v = x + bt.



Un exemple de solution : $f(x,t) = \frac{1}{2} \exp(-(x-t-1)^2) + \exp(-(x+t+1)^2)$